Payment Processing...

Quantitative Aptitude Set -386

Here we are providing new series of Quantitative Aptitude Questions for upcoming exams, so the aspirants can practice it on a daily basis.

Following question contains two equations as I and II. You have to solve both equations and determine the relationship between them and give answer as,

1)

I) 
x2– x – 12 = 0

II)y2– y – 6 = 0

A.x > y

B.x ≥ y

C.x = y or relationship can’t be determined.

D.x < y

E.x ≤ y

2) I) x2 + 39x + 380 = 0

II)y2+ y – 342 = 0

A.x > y

B.x ≥ y

C.x = y or relationship can’t be determined.

D.x < y

E.x ≤ y

3) I) x2 + 3x – 108 = 0

II)y2+ 25y + 156 = 0

A.x > y

B.x ≥ y

C.x = y or relationship can’t be determined.

D.x < y

E.x ≤ y

4) I) 2x + y = 11

II)4x – y = 7

A.x > y

B.x ≥ y

C.x = y or relationship can’t be determined.

D.x < y

E.x ≤ y

5) I) x2 – 30x + 221=0

II)y2– 23y + 132=0

A.x > y

B.x ≥ y

C.x = y or relationship can’t be determined.

D.x < y

E.x ≤ y

Answers :

1) Answer: C

x2 – x – 12 = 0

x2 – 4x + 3x – 12 = 0

x(x – 4) + 3(x – 4) = 0

(x + 3)(x – 4) = 0

x = 4, -3

y2 – y – 6 = 0

y2 – 3y + 2y – 6 = 0

y(y – 3) + 2(y – 3) = 0

(y + 2)(y – 3) = 0

y = -2, 3

Relationship between x and y cannot established.

2) Answer: E

x2 + 39x + 380 = 0

x2 + 20x + 19x + 380 = 0

x(x + 20) + 19(x + 20) = 0

(x + 19)(x + 20) = 0

x = -19, -20

y2 + y – 342 = 0

y2 + 19y – 18y – 342 = 0

y(y + 19) – 18(y + 19) = 0

(y – 18)(y + 19) = 0

y = 18, -19

Hence , x ≤ y

3) Answer: B

x2 + 3x – 108 = 0

x2 + 12x -9x – 108 = 0

x(x + 12) – 9(x + 12) = 0

(x – 9)(x + 12) = 0

x = 9, -12

y2 + 25y + 156 = 0

y2 + 12y + 13y + 156 = 0

y(y + 12)+ 13(y + 12) = 0

(y + 13)(y + 12) = 0

y = -13, -12

Hence, x ≥ y

4) Answer: D

2x + y = 11 -----(1)

4x – y = 7 -----(2)

From (1) and (2)

6x = 18

x = 3

y = 11 – 6 = 5

Hence, x < y

5) Answer: A

x2 – 30x + 221=0

x2 – 13x – 17x + 221 = 0

x(x – 13) – 17(x – 13) = 0

(x – 17)(x – 13) = 0

x = 17, 13

y2 – 23y + 132=0

y2 – 11y – 12y + 132 = 0

y(y -11) – 12(y – 11) = 0

(y – 12)(y – 11) = 0

y = 12, 11

Hence, x > y

×