Payment Processing...

Quantitative Aptitude Set -458

Here we are providing new series of Quantitative Aptitude Questions for upcoming exams, so the aspirants can practice it on a daily basis.

In the following questions, two equations I and II are given. You have to solve both equations and give an answer as,

1) I) x2 + 16x +

63=0

II)y2 + 24y + 143=0

a) x > y

b) x ≥ y

c) x < y

d) x ≤ y

e) x = y or the relation cannot be established.

2) I) 2x2 – 30x + 88 = 0

II)3y2– 30y + 48 = 0

a) x > y

b) x ≥ y

c) x < y

d) x ≤ y

e) x = y or the relation cannot be established.

3) I) x2 + 23x + 120 = 0

II) y2+ 26y + 165 = 0

a) x > y

b) x ≥ y

c) x < y

d) x ≤ y

e) x = y or the relation cannot be established.

4) I) 2x2 + 26x + 72 = 0

II) y2+ 13y + 36 = 0

a) x > y

b) x ≥ y

c) x < y

d) x ≤ y

e) x = y or the relation cannot be established.

5) I) x2 – 4x – 221 = 0

II) y2– 26y + 153 = 0

a) x > y

b) x ≥ y

c) x < y

d) x ≤ y

e) x = y or the relation cannot be established.

Answers :

1) Answer: A

x2 + 16x + 63=0

x2 + 9x + 7x + 63=0

x(x + 9) + 7(x + 9)=0

(x + 7) (x + 9)=0

x=-7, -9

y2 + 24y + 143=0

y2 + 11y + 13y + 143=0

y(y + 11) + 13(y + 11)=0

(y + 13)(y + 11)=0

y=-13, -11

Hence x > y

2) Answer: E

2x2 – 30x + 88=0

2x2 – 22x – 8x + 88=0

2x(x – 11) – 8(x – 11)=0

(2x – 8) (x – 11)=0

x=4, 11

3y2 – 30y + 48=0

3y2 – 24y – 6y + 48=0

3y(y – 8) – 6(y – 8)=0

(3y – 6) (y – 8)=0

y=2, 8

Hence Relationship between x and y cannot be established.

3) Answer: E

x2 + 23x + 120=0

x2 + 15x + 8x + 120=0

x(x + 15) + 8(x + 15)

(x + 8)(x + 15)=0

x = -8, -15

y2 + 26y + 165=0

y2 + 15y + 11y + 165=0

y(y + 15) + 11 (y + 15)=0

(y + 11) (y + 15)=0

y=-11, -15

Hence the relationship cannot be established.

4) Answer: E

2x2 + 26x + 72=0

2x2 + 18x + 8x + 72=0

2x(x + 9) + 8(x + 9)=0

(2x + 8) (x + 9)=0

x=-4, -9

y2 + 13y + 36=0

y2 + 9y + 4y + 36=0

y(y + 9) + 4 (y + 9)=0

(y + 4)( y + 9)=0

y=-4, -9

Hence the relationship cannot be established.

5) Answer: E

x2 – 4x – 221=0

x2 – 17x + 13x – 221=0

x(x – 17) + 13 (x – 17)=0

(x + 13)(x – 17)=0

x=-13, 17

y2 – 26y + 153=0

y2 – 17y – 9y + 153=0

y(y – 17) – 9(y – 17)=0

(y – 9)(y – 17)=0

y=9, 17

Hence Relationship cannot be established between x and y.

×